6  Characteristics of Fixed Effects Variables for Mixed Models

The following code reproduces the factor coding and descriptive statistics reported in Table 3 of the main text.

6.1 Dependent Variables

Show/Hide Code
for (p in str_perception_levels) {
  cat(paste0("#### ", p, "\n\n"))

  df <- data_rq1 %>%
    filter(perception == p) %>%
    group_by(Timepoint) %>%
    get_summary_stats(rating, type = "common") %>%
    mutate(across(c(mean, sd), ~ scales::number(.x, accuracy = .01)))

  print(kable(df))

  cat("\n")

  rm(p, df)
}

Confidence

Timepoint variable n min max median iqr mean sd se ci
Baseline rating 1490 1 6 4 2 3.69 1.44 0.037 0.073
Posttest rating 1785 1 6 4 2 3.88 1.46 0.035 0.068

Anxiety

Timepoint variable n min max median iqr mean sd se ci
Baseline rating 1490 1 6 3 2 3.31 1.41 0.036 0.071
Posttest rating 1785 1 6 3 2 3.00 1.37 0.033 0.064

Difficulty

Timepoint variable n min max median iqr mean sd se ci
Baseline rating 1490 1 6 4 1 3.55 1.26 0.033 0.064
Posttest rating 1785 1 6 4 2 3.43 1.30 0.031 0.060

6.2 Covariates

Cohort

Show/Hide Code
data_rq1$Cohort %>%
  contrasts() %>%
  as_tibble(rownames = "Factor Levels") %>%
  round_all_doubles()
Factor Levels Cohort 2 Cohort 3
Cohort 1 -0.11 -0.48
Cohort 2 0.89 -0.48
Cohort 3 -0.11 0.52

Semester Week

Show/Hide Code
data_rq1 %>%
  select(Participant, Semester_Week) %>%
  unique() %>%
  get_summary_stats(Semester_Week, type = "common")
variable n min max median iqr mean sd se ci
Semester_Week 149 -4.087 4.913 -1.087 5 0 2.79 0.229 0.452

Test Version

Show/Hide Code
data_rq1$Test_Version %>%
  contrasts() %>%
  as_tibble(rownames = "Factor Levels") %>%
  round_all_doubles()
Factor Levels B
A -0.50
B 0.50

Item-Level Accuracy

Factor Coding:

Show/Hide Code
data_rq1$`Item-Level Accuracy` %>%
  contrasts() %>%
  as_tibble(rownames = "Factor Levels") %>%
  round_all_doubles()
Factor Levels Correct
Incorrect -0.44
Correct 0.56

Baseline and Posttest Means and Standard Deviations:

Show/Hide Code
data_rq1 %>%
  select(Participant, Timepoint, Item, Accuracy_Raw) %>%
  unique() %>%
  group_by(Timepoint) %>%
  get_summary_stats(type = "common") %>%
  mutate(across(c(mean, sd), ~ scales::number(.x, accuracy = .01)))
Timepoint variable n min max median iqr mean sd se ci
Baseline Accuracy_Raw 1490 0 1 0 1 0.43 0.50 0.013 0.025
Posttest Accuracy_Raw 1785 0 1 0 1 0.44 0.50 0.012 0.023

Baseline Threat

Show/Hide Code
data_rq1 %>%
  select(Participant, Baseline_Threat) %>%
  unique() %>%
  get_summary_stats(Baseline_Threat, type = "common")
variable n min max median iqr mean sd se ci
Baseline_Threat 149 -3.102 2.865 -0.035 1.933 0 1.297 0.106 0.21

6.3 Main Independent Variables of Interest

Timepoint

Show/Hide Code
data_rq1$Timepoint %>%
  contrasts() %>%
  as_tibble(rownames = "Factor Levels")
Factor Levels Posttest
Baseline 0
Posttest 1

Condition

Show/Hide Code
data_rq1$Condition %>%
  contrasts() %>%
  as_tibble(rownames = "Factor Levels")
Factor Levels Mindfulness
Control -0.5
Mindfulness 0.5

Gender

Show/Hide Code
data_rq1$Gender %>%
  contrasts() %>%
  as_tibble(rownames = "Factor Levels") %>%
  round_all_doubles()
Factor Levels Women or Non-binary
Men -0.56
Women or Non-binary 0.44