9  Research Question 2

9.1 Model Specification

Mediation tests were conducted using mediation::mediate() using bias-corrected bootstrapped confidence intervals.

Show/Hide Code
# Formula for c path

formula_t <- function(perception) {
  as.formula(
    paste0(
      "Posttest_",
      perception,
      " ~
          Condition * Gender +
          Baseline_Score +
          Cohort_2 +
          Cohort_3 +
          Semester_Week +
          Posttest_Test_Version +
          Baseline_Threat +
          Baseline_",
      perception
    )
  )
}

# Formula for a path

formula_m <- function(perception) {
  as.formula(
    paste0(
      "EMA_Threat ~
          Condition * Gender +
          Baseline_Score +
          Cohort_2 +
          Cohort_3 +
          Semester_Week +
          Posttest_Test_Version +
          Baseline_Threat +
          Baseline_",
      perception
    )
  )
}

# Formula for c' and b paths

formula_y <- function(perception) {
  as.formula(
    paste0(
      "Posttest_",
      perception,
      " ~
          Condition * Gender +
          EMA_Threat * Gender +
          Baseline_Score +
          Cohort_2 +
          Cohort_3 +
          Semester_Week +
          Posttest_Test_Version +
          Baseline_Threat +
          Baseline_",
      perception
    )
  )
}

# Function for removing gender moderations from paths
# to show overall effects
remove_interactions <- function(perception, formula_fun) {
  update.formula(
    formula_fun(perception),
    . ~ . - Condition:Gender - Gender:EMA_Threat
  )
}

# Helper function to create lm with proper call
lm_with_call <- function(formula_func, perception, data, mod = TRUE) {
  if (mod) {
    formula <- formula_func(perception)
  } else {
    formula <- remove_interactions(perception, formula_func)
  }
  model <- lm(formula, data = data)
  model$call <- call("lm", formula = formula, data = quote(data))
  return(model)
}

# Linear models with men coded as 0
models_rq2_men <- bind_rows(
  list(
    Confidence = data_rq2,
    Anxiety = data_rq2,
    Difficulty = data_rq2
  ),
  .id = "perception"
) %>%
  nest(.by = "perception") %>%
  mutate(
    mod_t = map2(data, perception, ~ lm_with_call(formula_t, .y, .x)),
    mod_m = map2(data, perception, ~ lm_with_call(formula_m, .y, .x)),
    mod_y = map2(data, perception, ~ lm_with_call(formula_y, .y, .x))
  ) %>%
  group_by(perception) %>%
  name_list_columns()


# Linear models with women and non-binary students coded as 0
models_rq2_women <- bind_rows(
  list(
    Confidence = data_rq2,
    Anxiety = data_rq2,
    Difficulty = data_rq2
  ),
  .id = "perception"
) %>%
  # Reverse gender coding for women/nb path models
  mutate(Gender = fct_relevel(Gender, "Women or Non-binary")) %>%
  nest(.by = "perception") %>%
  mutate(
    mod_t = map2(data, perception, ~ lm_with_call(formula_t, .y, .x)),
    mod_m = map2(data, perception, ~ lm_with_call(formula_m, .y, .x)),
    mod_y = map2(data, perception, ~ lm_with_call(formula_y, .y, .x))
  ) %>%
  group_by(perception) %>%
  name_list_columns()

# Linear models without gender moderation
models_rq2_no_mod <- bind_rows(
  list(
    Confidence = data_rq2,
    Anxiety = data_rq2,
    Difficulty = data_rq2
  ),
  .id = "perception"
) %>%
  nest(.by = "perception") %>%
  mutate(
    mod_t = map2(
      data,
      perception,
      ~ lm_with_call(formula_t, .y, .x, mod = FALSE)
    ),
    mod_m = map2(
      data,
      perception,
      ~ lm_with_call(formula_m, .y, .x, mod = FALSE)
    ),
    mod_y = map2(
      data,
      perception,
      ~ lm_with_call(formula_y, .y, .x, mod = FALSE)
    )
  ) %>%
  group_by(perception) %>%
  name_list_columns()

# Function for printing model results
tab_rq2_models <- function(df, perception) {
  lbl_out <- paste0("Posttest ", perception)

  handle_model_print(
    mods <- list(
      df$mod_t[[perception]],
      df$mod_m[[perception]],
      df$mod_y[[perception]]
    ),
    nm = paste0(
      "Model ",
      1:3,
      " DV:<br>",
      c(lbl_out, "EMA Threat", lbl_out)
    ),
    n_models = 3
  )
}

# Function for printing path diagram
plot_path_diagram <- function(perception, gender) {
  df <- get(paste0("models_rq2_", gender), envir = .GlobalEnv)

  if (gender == "no_mod") {
    dv <- paste0(perception, "\n(Overall)")
  } else {
    dv <- paste0(perception, "\n(", str_to_title(gender), ")")
  }

  p <- gg_path_diagram(
    mod_t = df$mod_t[[perception]],
    mod_m = df$mod_m[[perception]],
    mod_y = df$mod_y[[perception]],
    str_med = "EMA_Threat",
    str_iv = "ConditionMindfulness",
    lbl_med = "EMA Threat",
    lbl_iv = "Mindfulness",
    lbl_dv = dv,
    pad_x = 3.5
  )

  return(p)
}

# Function for running mediation models for each level of the moderator (using mediation package)

my_mediate <- function(
  df = models_rq2_men,
  perception,
  gender,
  sims = med_sims
) {
  if (gender == "men") {
    lbl_gender <- "Men"
  } else {
    lbl_gender <- "Women or Non-binary"
  }

  set.seed(1983)

  mediation::mediate(
    model.m = df$mod_m[[perception]],
    model.y = df$mod_y[[perception]],
    sim = sims,
    boot = TRUE,
    boot.ci.type = "bca",
    covariates = list(Gender = lbl_gender),
    treat = "Condition",
    mediator = "EMA_Threat",
    control.value = "Control",
    treat.value = "Mindfulness"
  )
}

my_mediate_no_mod <- function(
  df = models_rq2_no_mod,
  perception,
  sims = med_sims
) {
  set.seed(1983)

  mediation::mediate(
    model.m = df$mod_m[[perception]],
    model.y = df$mod_y[[perception]],
    sim = sims,
    boot = TRUE,
    boot.ci.type = "bca",
    treat = "Condition",
    mediator = "EMA_Threat",
    control.value = "Control",
    treat.value = "Mindfulness"
  )
}

9.2 Confidence

Men Results

Linear Model Results

Show/Hide Code
tab_rq2_models(models_rq2_men, "Confidence")
Supplementary Table 9.1: Mediation Analysis for Confidence at Posttest: Men
  Model 1 DV:
Posttest Confidence
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Confidence
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) 0.07 0.13 0.586 0.11 0.13 0.388 0.08 0.13 0.545
Condition [Mindfulness] -0.00 0.17 0.985 -0.15 0.16 0.353 -0.03 0.17 0.867
Gender [Women or Non-binary] -0.23 0.17 0.175 0.02 0.17 0.886 -0.25 0.17 0.151
Baseline Score 0.09 0.06 0.110 0.04 0.06 0.443 0.10 0.06 0.087
Cohort 2 0.09 0.10 0.364 -0.04 0.10 0.726 0.08 0.10 0.423
Cohort 3 -0.01 0.14 0.935 -0.10 0.14 0.485 -0.03 0.14 0.826
Semester Week 0.03 0.15 0.838 -0.02 0.14 0.895 0.01 0.15 0.919
Posttest Test Version [B] -0.08 0.11 0.479 0.09 0.11 0.392 -0.07 0.11 0.540
Baseline Threat -0.05 0.07 0.479 0.65 0.06 <0.001 0.05 0.09 0.594
Baseline Confidence 0.69 0.07 <0.001 -0.17 0.07 0.015 0.67 0.07 <0.001
Condition [Mindfulness] × Gender [Women or Non-binary] 0.35 0.22 0.115 -0.35 0.22 0.123 0.35 0.23 0.128
EMA Threat -0.18 0.11 0.115
Gender [Women or Non-binary] × EMA Threat 0.10 0.12 0.420
Observations 148 148 148
R2 / R2 adjusted 0.589 / 0.559 0.590 / 0.561 0.597 / 0.561

Path Diagram

Show/Hide Code
plot_path_diagram("Confidence", "men")
Supplementary Figure 9.1: Mediation Analysis for Confidence at Posttest: Men

Mediation Test

Show/Hide Code
my_mediate(perception = "Confidence", gender = "men") %>% kable_mediation()
Supplementary Table 9.2: Mediation Analysis for Confidence at Posttest: Men
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect 0.03 -0.02 0.10 0.3546
Avg. Direct Effect -0.03 -0.32 0.27 0.8776
Total Effect 0.00 -0.30 0.30 0.9940
Proportion Mediated -77.28 -0.29 47.14 0.8886
Note. Sample Size Used: 148; Simulations: 10000

Women or Non-binary Results

Linear Model Results
Show/Hide Code
tab_rq2_models(models_rq2_women, "Confidence")
Supplementary Table 9.3: Mediation Analysis for Confidence at Posttest: Women
  Model 1 DV:
Posttest Confidence
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Confidence
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) -0.16 0.12 0.203 0.14 0.12 0.275 -0.17 0.13 0.196
Condition [Mindfulness] 0.35 0.15 0.019 -0.50 0.15 0.001 0.32 0.16 0.044
Gender [Men] 0.23 0.17 0.175 -0.02 0.17 0.886 0.25 0.17 0.151
Baseline Score 0.09 0.06 0.110 0.04 0.06 0.443 0.10 0.06 0.087
Cohort 2 0.09 0.10 0.364 -0.04 0.10 0.726 0.08 0.10 0.423
Cohort 3 -0.01 0.14 0.935 -0.10 0.14 0.485 -0.03 0.14 0.826
Semester Week 0.03 0.15 0.838 -0.02 0.14 0.895 0.01 0.15 0.919
Posttest Test Version [B] -0.08 0.11 0.479 0.09 0.11 0.392 -0.07 0.11 0.540
Baseline Threat -0.05 0.07 0.479 0.65 0.06 <0.001 0.05 0.09 0.594
Baseline Confidence 0.69 0.07 <0.001 -0.17 0.07 0.015 0.67 0.07 <0.001
Condition [Mindfulness] × Gender [Men] -0.35 0.22 0.115 0.35 0.22 0.123 -0.35 0.23 0.128
EMA Threat -0.08 0.10 0.401
Gender [Men] × EMA Threat -0.10 0.12 0.420
Observations 148 148 148
R2 / R2 adjusted 0.589 / 0.559 0.590 / 0.561 0.597 / 0.561
Path Diagram
Show/Hide Code
plot_path_diagram("Confidence", "women")
Supplementary Figure 9.2: Mediation Analysis for Confidence at Posttest: Women
Mediation Test
Show/Hide Code
my_mediate(perception = "Confidence", gender = "women") %>% kable_mediation()
Supplementary Table 9.4: Mediation Analysis for Confidence at Posttest: Women
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect 0.04 -0.03 0.19 0.3432
Avg. Direct Effect 0.32 0.01 0.63 0.0444
Total Effect 0.36 0.07 0.67 0.0140
Proportion Mediated 0.11 -0.03 3.84 0.3500
Note. Sample Size Used: 148; Simulations: 10000

9.3 Anxiety

Men Results

Linear Model Results

Show/Hide Code
tab_rq2_models(models_rq2_men, "Anxiety")
Supplementary Table 9.5: Mediation Analysis for Anxiety at Posttest: Men
  Model 1 DV:
Posttest Anxiety
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Anxiety
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) -0.08 0.13 0.551 0.12 0.13 0.337 -0.11 0.13 0.392
Condition [Mindfulness] 0.00 0.16 0.991 -0.16 0.16 0.334 0.03 0.16 0.872
Gender [Women or Non-binary] 0.24 0.17 0.155 -0.01 0.17 0.935 0.22 0.17 0.193
Baseline Score -0.08 0.06 0.169 0.03 0.06 0.624 -0.08 0.06 0.145
Cohort 2 -0.03 0.10 0.751 -0.05 0.10 0.631 -0.03 0.10 0.756
Cohort 3 -0.04 0.14 0.773 -0.12 0.14 0.390 -0.03 0.14 0.849
Semester Week -0.10 0.14 0.465 -0.07 0.14 0.611 -0.11 0.14 0.455
Posttest Test Version [B] 0.09 0.11 0.439 0.09 0.11 0.427 0.07 0.11 0.538
Baseline Threat 0.07 0.06 0.263 0.67 0.06 <0.001 -0.05 0.08 0.558
Baseline Anxiety 0.68 0.06 <0.001 0.18 0.06 0.004 0.65 0.06 <0.001
Condition [Mindfulness] × Gender [Women or Non-binary] -0.37 0.22 0.100 -0.29 0.22 0.190 -0.26 0.22 0.254
EMA Threat 0.12 0.11 0.268
Gender [Women or Non-binary] × EMA Threat 0.13 0.12 0.261
Observations 148 148 148
R2 / R2 adjusted 0.589 / 0.559 0.597 / 0.568 0.610 / 0.575

Path Diagram

Show/Hide Code
plot_path_diagram("Anxiety", "men")
Supplementary Figure 9.3: Mediation Analysis for Anxiety at Posttest: Men

Mediation Test

Show/Hide Code
my_mediate(perception = "Anxiety", gender = "men") %>% kable_mediation()
Supplementary Table 9.6: Mediation Analysis for Anxiety at Posttest: Men
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect -0.02 -0.13 0.01 0.4680
Avg. Direct Effect 0.03 -0.29 0.33 0.8690
Total Effect 0.01 -0.31 0.31 0.9702
Proportion Mediated -2.98 0.09 2292.06 0.9298
Note. Sample Size Used: 148; Simulations: 10000

Women or Non-binary Results

Linear Model Results
Show/Hide Code
tab_rq2_models(models_rq2_women, "Anxiety")
Supplementary Table 9.7: Mediation Analysis for Anxiety at Posttest: Women
  Model 1 DV:
Posttest Anxiety
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Anxiety
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) 0.17 0.13 0.188 0.11 0.12 0.377 0.11 0.13 0.384
Condition [Mindfulness] -0.37 0.15 0.015 -0.45 0.15 0.003 -0.23 0.16 0.140
Gender [Men] -0.24 0.17 0.155 0.01 0.17 0.935 -0.22 0.17 0.193
Baseline Score -0.08 0.06 0.169 0.03 0.06 0.624 -0.08 0.06 0.145
Cohort 2 -0.03 0.10 0.751 -0.05 0.10 0.631 -0.03 0.10 0.756
Cohort 3 -0.04 0.14 0.773 -0.12 0.14 0.390 -0.03 0.14 0.849
Semester Week -0.10 0.14 0.465 -0.07 0.14 0.611 -0.11 0.14 0.455
Posttest Test Version [B] 0.09 0.11 0.439 0.09 0.11 0.427 0.07 0.11 0.538
Baseline Threat 0.07 0.06 0.263 0.67 0.06 <0.001 -0.05 0.08 0.558
Baseline Anxiety 0.68 0.06 <0.001 0.18 0.06 0.004 0.65 0.06 <0.001
Condition [Mindfulness] × Gender [Men] 0.37 0.22 0.100 0.29 0.22 0.190 0.26 0.22 0.254
EMA Threat 0.26 0.10 0.009
Gender [Men] × EMA Threat -0.13 0.12 0.261
Observations 148 148 148
R2 / R2 adjusted 0.589 / 0.559 0.597 / 0.568 0.610 / 0.575
Path Diagram
Show/Hide Code
plot_path_diagram("Anxiety", "women")
Supplementary Figure 9.4: Mediation Analysis for Confidence at Posttest: Women
Mediation Test
Show/Hide Code
my_mediate(perception = "Anxiety", gender = "women") %>% kable_mediation()
Supplementary Table 9.8: Mediation Analysis for Confidence at Posttest: Women
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect -0.11 -0.32 -0.02 0.0176
Avg. Direct Effect -0.23 -0.55 0.11 0.1858
Total Effect -0.35 -0.66 -0.04 0.0284
Proportion Mediated 0.33 0.02 2.11 0.0436
Note. Sample Size Used: 148; Simulations: 10000

9.4 Difficulty

Men Results

Linear Model Results

Show/Hide Code
tab_rq2_models(models_rq2_men, "Difficulty")
Supplementary Table 9.9: Mediation Analysis for Difficulty at Posttest: Men
  Model 1 DV:
Posttest Difficulty
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Difficulty
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) 0.09 0.14 0.519 0.10 0.13 0.440 0.09 0.14 0.516
Condition [Mindfulness] -0.47 0.18 0.009 -0.17 0.16 0.298 -0.47 0.18 0.009
Gender [Women or Non-binary] 0.16 0.18 0.377 0.05 0.17 0.763 0.16 0.18 0.380
Baseline Score -0.04 0.06 0.465 0.04 0.06 0.496 -0.04 0.06 0.474
Cohort 2 -0.15 0.11 0.166 -0.03 0.10 0.747 -0.15 0.11 0.170
Cohort 3 -0.18 0.15 0.243 -0.09 0.14 0.527 -0.18 0.16 0.246
Semester Week -0.12 0.15 0.446 -0.02 0.15 0.880 -0.12 0.16 0.454
Posttest Test Version [B] 0.05 0.12 0.669 0.09 0.11 0.426 0.05 0.12 0.664
Baseline Threat -0.01 0.07 0.891 0.68 0.06 <0.001 0.00 0.09 0.995
Baseline Difficulty 0.66 0.07 <0.001 0.15 0.06 0.018 0.67 0.07 <0.001
Condition [Mindfulness] × Gender [Women or Non-binary] 0.12 0.24 0.609 -0.31 0.22 0.165 0.12 0.25 0.639
EMA Threat -0.01 0.12 0.916
Gender [Women or Non-binary] × EMA Threat -0.00 0.13 0.976
Observations 148 148 148
R2 / R2 adjusted 0.535 / 0.501 0.590 / 0.560 0.535 / 0.493

Path Diagram

Show/Hide Code
plot_path_diagram("Difficulty", "men")
Supplementary Figure 9.5: Mediation Analysis for Difficulty at Posttest: Men

Mediation Test

Show/Hide Code
my_mediate(perception = "Difficulty", gender = "men") %>% kable_mediation()
Supplementary Table 9.10: Mediation Analysis for Difficulty at Posttest: Men
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect 0.00 -0.03 0.09 0.8944
Avg. Direct Effect -0.47 -0.80 -0.13 0.0070
Total Effect -0.47 -0.79 -0.13 0.0064
Proportion Mediated 0.00 -0.31 0.06 0.8940
Note. Sample Size Used: 148; Simulations: 10000

Women or Non-binary Results

Linear Model Results

Show/Hide Code
tab_rq2_models(models_rq2_women, "Difficulty")
Supplementary Table 9.11: Mediation Analysis for Difficulty at Posttest: Women
  Model 1 DV:
Posttest Difficulty
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Difficulty
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) 0.25 0.13 0.063 0.15 0.12 0.225 0.25 0.14 0.070
Condition [Mindfulness] -0.34 0.16 0.031 -0.48 0.15 0.001 -0.35 0.17 0.040
Gender [Men] -0.16 0.18 0.377 -0.05 0.17 0.763 -0.16 0.18 0.380
Baseline Score -0.04 0.06 0.465 0.04 0.06 0.496 -0.04 0.06 0.474
Cohort 2 -0.15 0.11 0.166 -0.03 0.10 0.747 -0.15 0.11 0.170
Cohort 3 -0.18 0.15 0.243 -0.09 0.14 0.527 -0.18 0.16 0.246
Semester Week -0.12 0.15 0.446 -0.02 0.15 0.880 -0.12 0.16 0.454
Posttest Test Version [B] 0.05 0.12 0.669 0.09 0.11 0.426 0.05 0.12 0.664
Baseline Threat -0.01 0.07 0.891 0.68 0.06 <0.001 0.00 0.09 0.995
Baseline Difficulty 0.66 0.07 <0.001 0.15 0.06 0.018 0.67 0.07 <0.001
Condition [Mindfulness] × Gender [Men] -0.12 0.24 0.609 0.31 0.22 0.165 -0.12 0.25 0.639
EMA Threat -0.02 0.10 0.875
Gender [Men] × EMA Threat 0.00 0.13 0.976
Observations 148 148 148
R2 / R2 adjusted 0.535 / 0.501 0.590 / 0.560 0.535 / 0.493

Path Diagram

Show/Hide Code
plot_path_diagram("Difficulty", "women")
Supplementary Figure 9.6: Mediation Analysis for Difficulty at Posttest: Women

Mediation Test

Show/Hide Code
my_mediate(perception = "Difficulty", gender = "women") %>% kable_mediation()
Supplementary Table 9.12: Mediation Analysis for Difficulty at Posttest: Women
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect 0.01 -0.13 0.13 0.9034
Avg. Direct Effect -0.35 -0.70 -0.03 0.0320
Total Effect -0.34 -0.66 -0.05 0.0254
Proportion Mediated -0.02 -0.66 0.55 0.9068
Note. Sample Size Used: 148; Simulations: 10000

9.5 Unmoderated Mediation Results (preregistered analyses)

Confidence

Linear Models

Show/Hide Code
tab_rq2_models(models_rq2_no_mod, "Confidence")
Supplementary Table 9.13: Mediation Analysis for Confidence at Posttest without Gender Moderation
  Model 1 DV:
Posttest Confidence
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Confidence
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) -0.03 0.12 0.828 0.21 0.12 0.076 0.00 0.12 0.982
Condition [Mindfulness] 0.19 0.11 0.083 -0.35 0.11 0.002 0.15 0.11 0.200
Gender [Women or Non-binary] -0.05 0.12 0.708 -0.16 0.12 0.210 -0.07 0.12 0.587
Baseline Score 0.09 0.06 0.116 0.04 0.06 0.435 0.10 0.06 0.093
Cohort 2 0.10 0.10 0.351 -0.04 0.10 0.705 0.09 0.10 0.375
Cohort 3 -0.01 0.15 0.966 -0.11 0.14 0.464 -0.02 0.14 0.887
Semester Week 0.03 0.15 0.812 -0.02 0.15 0.868 0.03 0.15 0.828
Posttest Test Version [B] -0.09 0.11 0.406 0.11 0.11 0.329 -0.08 0.11 0.483
Baseline Threat -0.06 0.06 0.349 0.67 0.06 <0.001 0.03 0.09 0.734
Baseline Confidence 0.68 0.07 <0.001 -0.16 0.07 0.021 0.66 0.07 <0.001
EMA Threat -0.13 0.08 0.114
Observations 148 148 148
R2 / R2 adjusted 0.581 / 0.554 0.583 / 0.556 0.589 / 0.559

Path Diagram

Show/Hide Code
plot_path_diagram("Confidence", "no_mod")
Supplementary Figure 9.7: Mediation Analysis for Confidence at Posttest without Gender Moderation

Mediation Test

Show/Hide Code
my_mediate_no_mod(perception = "Confidence") |> kable_mediation()
Supplementary Table 9.14: Mediation Analysis for Confidence at Posttest without Gender Moderation
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect 0.05 0.00 0.13 0.0610
Avg. Direct Effect 0.15 -0.07 0.37 0.1890
Total Effect 0.19 -0.02 0.42 0.0816
Proportion Mediated 0.24 0.16 25.32 0.1370
Note. Sample Size Used: 148; Simulations: 10000

Anxiety

Linear Models

Show/Hide Code
tab_rq2_models(models_rq2_no_mod, "Anxiety")
Supplementary Table 9.15: Mediation Analysis for Anxiety at Posttest without Gender Moderation
  Model 1 DV:
Posttest Anxiety
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Anxiety
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) 0.02 0.12 0.836 0.20 0.11 0.075 -0.02 0.11 0.857
Condition [Mindfulness] -0.20 0.11 0.073 -0.32 0.11 0.004 -0.13 0.11 0.244
Gender [Women or Non-binary] 0.05 0.12 0.697 -0.17 0.12 0.169 0.08 0.12 0.487
Baseline Score -0.08 0.06 0.179 0.03 0.06 0.611 -0.08 0.06 0.139
Cohort 2 -0.03 0.10 0.738 -0.05 0.10 0.621 -0.02 0.10 0.816
Cohort 3 -0.05 0.15 0.748 -0.13 0.14 0.376 -0.02 0.14 0.894
Semester Week -0.11 0.14 0.462 -0.07 0.14 0.606 -0.09 0.14 0.524
Posttest Test Version [B] 0.10 0.11 0.363 0.10 0.11 0.365 0.08 0.11 0.467
Baseline Threat 0.08 0.06 0.195 0.68 0.06 <0.001 -0.07 0.08 0.405
Baseline Anxiety 0.68 0.06 <0.001 0.18 0.06 0.004 0.65 0.06 <0.001
EMA Threat 0.22 0.08 0.011
Observations 148 148 148
R2 / R2 adjusted 0.581 / 0.554 0.592 / 0.566 0.601 / 0.571

Path Diagram

Show/Hide Code
plot_path_diagram("Anxiety", "no_mod")
Supplementary Figure 9.8: Mediation Analysis for Anxiety at Posttest without Gender Moderation

Mediation Test

Show/Hide Code
my_mediate_no_mod(perception = "Anxiety") |> kable_mediation()
Supplementary Table 9.16: Mediation Analysis for Anxiety at Posttest without Gender Moderation
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect -0.07 -0.18 -0.01 0.0202
Avg. Direct Effect -0.13 -0.36 0.10 0.2546
Total Effect -0.20 -0.42 0.02 0.0784
Proportion Mediated 0.35 -0.44 3.16 0.0930
Note. Sample Size Used: 148; Simulations: 10000

Difficulty

Linear Models

Show/Hide Code
tab_rq2_models(models_rq2_no_mod, "Difficulty")
Supplementary Table 9.17: Mediation Analysis for Difficulty at Posttest without Gender Moderation
  Model 1 DV:
Posttest Difficulty
Model 2 DV:
EMA Threat
Model 3 DV:
Posttest Difficulty
Predictors Estimates SE p Estimates SE p Estimates SE p
(Intercept) 0.06 0.12 0.647 0.19 0.11 0.108 0.06 0.12 0.629
Condition [Mindfulness] -0.40 0.12 0.001 -0.34 0.11 0.002 -0.41 0.12 0.001
Gender [Women or Non-binary] 0.22 0.13 0.082 -0.11 0.12 0.346 0.22 0.13 0.087
Baseline Score -0.04 0.06 0.459 0.04 0.06 0.484 -0.04 0.06 0.469
Cohort 2 -0.15 0.11 0.167 -0.04 0.10 0.733 -0.15 0.11 0.167
Cohort 3 -0.18 0.15 0.246 -0.10 0.15 0.508 -0.18 0.15 0.243
Semester Week -0.12 0.15 0.448 -0.02 0.15 0.869 -0.12 0.15 0.448
Posttest Test Version [B] 0.05 0.12 0.699 0.10 0.11 0.362 0.05 0.12 0.688
Baseline Threat -0.01 0.06 0.842 0.69 0.06 <0.001 0.00 0.09 0.991
Baseline Difficulty 0.67 0.07 <0.001 0.15 0.06 0.020 0.67 0.07 <0.001
EMA Threat -0.02 0.09 0.823
Observations 148 148 148
R2 / R2 adjusted 0.534 / 0.503 0.584 / 0.557 0.534 / 0.500

Path Diagram

Show/Hide Code
plot_path_diagram("Difficulty", "no_mod")
Supplementary Figure 9.9: Mediation Analysis for Difficulty at Posttest without Gender Moderation

Mediation Test

Show/Hide Code
my_mediate_no_mod(perception = "Difficulty") |> kable_mediation()
Supplementary Table 9.18: Mediation Analysis for Difficulty at Posttest without Gender Moderation
Statistic Estimate CI Lower CI Upper p
Avg. Causal Mediation Effect 0.01 -0.06 0.08 0.8550
Avg. Direct Effect -0.41 -0.65 -0.17 0.0012
Total Effect -0.40 -0.63 -0.18 0.0004
Proportion Mediated -0.02 -0.26 0.17 0.8550
Note. Sample Size Used: 148; Simulations: 10000